Aij Special Issue on Relevance Wrappers for Feature Subset Selection

نویسندگان

  • Ron Kohavi
  • George H. John
چکیده

In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a feature subset selection method should consider how the algorithm and the training set interact. We explore the relation between optimal feature subset selection and relevance. Our wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain. We study the strengths and weaknesses of the wrapper approach and show a series of improved designs. We compare the wrapper approach to induction without feature subset selection and to Relief, a lter approach to feature subset selection. Signiicant improvement in accuracy is achieved for some datasets for the two families of induction algorithms used: decision trees and Naive-Bayes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

Wrapper Feature Selection

INTRODUCTION It is well known that the performance of most data mining algorithms can be deteriorated by features that do not add any value to learning tasks. Feature selection can be used to limit the effects of such features by seeking only the relevant subset from the original features (de Souza et al., 2006). This subset of the relevant features is discovered by removing those that are cons...

متن کامل

Wrappers for Feature Subset Selection

In the feature subset selection problem a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention while ignoring the rest To achieve the best possible performance with a particular learning algorithm on a particular training set a feature subset selection method should consider how the algorithm and the training set interact We e...

متن کامل

IFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF

Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996